Rus Eng
  • Research
    Computing Center
    Lomonosov Moscow
    State University

    Alexander V. Goncharsky and Sergey Y. Romanov. Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Problems, 33(2):025003, 2017.

  • Alexander V. Goncharsky and Sergey Y. Romanov. Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation. Inverse Problems, 33(2):025003, 2017. [ DOI ]

    Аннотация

    We develop efficient iterative methods for solving inverse problems of wave tomography in models incorporating both diffraction effects and attenuation. In the inverse problem the aim is to reconstruct the velocity structure and the function that characterizes the distribution of attenuation properties in the object studied. We prove mathematically and rigorously the differentiability of the residual functional in normed spaces, and derive the corresponding formula for the Fréchet derivative. The computation of the Fréchet derivative includes solving both the direct problem with the Neumann boundary condition and the reversed-time conjugate problem. We develop efficient methods for numerical computations where the approximate solution is found using the detector measurements of the wave field and its normal derivative. The wave field derivative values at detector locations are found by solving the exterior boundary value problem with the Dirichlet boundary conditions. We illustrate the efficiency of this approach by applying it to model problems. The algorithms developed are highly parallelizable and designed to be run on supercomputers. Among the most promising medical applications of our results is the development of ultrasonic tomographs for differential diagnosis of breast cancer.